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Abstract 

An iterative solution to the problem of scattering from a one-dimensional rough surface 

is obtained for the Dirichlet boundary condition. The advantages of this method are that 

bounds for the convergence of the solution may be established and that the solution may be 

readily iterated to sufficiently high order in the interaction to examine the rate at which it 

converges. Absolute convergence of the iterative solution is also a sufficient condition for the 

convergence of the operator expansion method for surfaces on which the slope is everywhere 

less than unity. A numerical example of scattering from an echelette grating is considered, 

and bounds for convergence established. It is found that for scattering from such surfaces, 

the rate at which the iterative solution converges decreases as the surface slope is increased. 

Corresponding results are found for the operator expansion method. 
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1. Introduction 

In the past two decades, many new approaches to the rough-surface scattering problem 

have been proposed that have potential for treating scatter from very rough surfaces. These 

include the small-slope approximation (Voronovich 1985) and its extensions (Tatarskii 1993, 

McDaniel 1995, and Charnotskii and Tatarskii 1996). Also noteworthy in this respect are 

the phase perturbation technique of Shen amd Maradudin (1980) and the development of 

second order corrections to the Kirchhoff approximation by Chen and Ishimaru (1990). The 

operator expansion method of Milder (1991) may also be applicable to very rough surfaces. 

This method is basically an extension of earlier work by Lysanov (1956) and Meecham 

(1956) to obtain higher order terms of a series solution to the surface scattering problem 

(Milder 1996). In a further extension, Voronovich (1996) has exploited the fact that the 

operator expansion method is not gauge invariant to formulate the non-local small-slope 

approximation. 

It is not surprising that operator expansion methods are more accurate than small-slope 

approximations since the small-slope approximations are obtained through the expansion of 

certain terms in the operator expansions (McDaniel 1995). For scatter from random-rough 

surfaces, the small-slope approximations permit the calculation of ensemble averages, while 

the operator expansion methods require Monte Carlo simulation. However, such simula- 

tions may be readily performed through the repeated application of the Fourier transform 

(Kaczkowski and Thorsos 1994). An important remaining issue is the regime of applicability 

of operator expansions. 

In this article, an iterative solution to an integral equation of the first kind for the normal 

derivative of the surface field is obtained for scattering from a one-dimensional randomly 

rough surface characterized by the Dirichlet boundary condition. This results in a series for 

the surface potential for which the conditions for convergence may readily be established. 

Successive terms in this series may also be easily generated to examine the rate at which 

the series converges.   A disadvantage of this solution is that obtaining numerical results 



requires even more computational effort than in the case of the operator expansion method. 

In addition to the need for Monte Carlo simulation for treating randomly rough surfaces, 

double integrations are required for scatter from one-dimensional surfaces, and four-fold 

integrations for the two-dimensional case. Because operator expansions are obtained by 

series expansion of terms in the iterative solution, a sufficient condition for the convergence 

of the operator expansion method may be obtained for surfaces having slopes everywhere 

less than unity where this series expansion is valid. 

In section 2 of this paper, the basic theoretical development of the iterative solution is 

presented and its relationship to the corresponding operator expansion is discussed. The 

surface potential for a plane wave incident on a flat surface of arbitrary slope is evaluated to 

demonstrate the differences between the iterative solution and operator expansion. Section 

3 addresses the numerical solution of the relevant equations and establishes the conditions 

for convergence of the iterative and operator series. 

Scattering from a echelette grating is considered in section 4, in which numerical results 

for the iterative solution and operator expansion are compared with exact solutions. First, 

the region of convergence of the iterative solution is established and is found to significantly 

exceed that of Milder's (1991) Fresnel phase criterion. The rate of convergence of the iterative 

solution is examined by computing successive terms of this series and is found to depend on 

the incident grazing angle as well as the surface slope. Numerical results are also presented 

for the operator expansion method. In section 5, the findings of this study are discussed. 

2. Theoretical development 

The problem addressed is illustrated in figure 1 in which a plane wave pinc of wavelength 

A = 2rr/k 

pinc = exp[i(K0x - VQZ)] (1) 

is incident on a one-dimensional rough surface on which the Dirichlet boundary condition is 

obeyed. Here n0 = kcos90, v0 = fcsin0o, 90 is the incident grazing angle, and k is the wave 

number. 



The scattered field p3 is represented as 

Ps= I ditfS(Kf, KQ) exp[i(Kfx + Vfz)] (2) 

where Kf = kcosOf, ff = ksinOf, and the scattering amplitude S(KJ,K0) is defined as 

/dx 
-^- exp{-i[nfx + i/fC(x)]}^(x) (3) 

where the surface potential xj>(x) is defined below. The definition of S(Kf,K0) in (3) differs 

from that of Voronovich (1985), and the requirement that it be reciprocal takes the form 

VfS(Kf, /Co) = U0S(-K0, -Kf). 

Evaluation of the scattering amplitude requires the solution of an integral equation (Uret- 

sky 1965) for the surface potential 

/ rp(x')V{x, x')dx' = -2$(x) (4) 

where 
. .      i \    dr>        . . 8T> 

(5) iKx) = - -!+«*>£ 
V(x,x') = kHJ)

1\kp)/2 (6) 

with p = {(x-x')2 + [C(x)-C(x')]2}^\ H£
]
 a Hankel function of the first kind, (' the surface 

slope, and ip(x) = pinc(x). In (4), T/>(X) is evaluated on the rough surface ((x). Applying the 

operator f dxexp(—inx) to both sides of (4) yields 

/dxdx1 t -~ 
——V(x,x')exp(—inx) l dK'tß(K')exTp(iK'x') = —2^(K) (7) 

where IJ;(K) = f dxiß(x) exp(—iitx), and a similar expression holds for i/>(/c). 

To proceed, we write 

V{x, x') = VW(x, x') - VW{x, x') (8) 

where V(°)(x,x') = kH^(k\x - x'\)/2, and V^(x,x') = V^(x,x') - V(x,x'). The surface 

potential TJ>(K) is next expanded as an ordered series in the interaction 

V>(/c) = £ V>(n)(«) = V>(1)(«) + V-(2)(«) + V>(3)(«) + • • • • (9) 



Substituting (8) and (9) in (7), and solving successively for the ip^(n) yields 

f lf>{1)(K')A(K, K')dK' = -2${K) (10) 

where 

A{K,K')= [ C^VW(x,x')exp[i{K'x' - KX)). (11) 

The integral on the left hand side of (10) may be evaluated to obtain 

V>
(1)

(K) = -2i/$(K)/k (12) 

where 

( \ -1 (*3 - «2)1/2;   K < k 
u - V^K) - |  .^ _ p)1/2;   K > k 

Higher order terms for which n > 1, take the form 

kl/>W(K)/v = j II>W(K')A(K, K')dK' = j ^n-l){K')B{K, K')dK' (13) 

where B(K,K') is defined similarly to A(K,K') in terms of V^(x,x'). Uretsky (1965) has 

shown that multiple integrals of the type appearing on the left hand side of (7) converge 

provided %I){K') grows no faster than some finite power of «', so that the interchange of the 

integral over «' with the spatial integrals to obtain (10) and (13) is permissable. 

To obtain the operator expansion, H§\kp) - H^\k\x - x'\) is expanded using (Watson 

1966) 

^Ki + rn-^M^E^f-^J  H£M- (14) 
The convergence of this series is governed by the singular nature of the Hankel function. 

Inserting the limiting form of the Hankel function into (14), it follows that the series is 

absolutely and uniformly convergent provided r = [((x) - C(x')]2/(x - x')2 < 1, or that, the 

surface slope is everywhere less than unity. Substituting (14) into (9) yields an expansion 

for the surface potential. If (9) and (14) are absolutely convergent, the summation of this 

expansion may be rearranged in any arbitrary order since the orders of integration and 

summation in (9) may be freely interchanged.   In particular, the sum may be rearranged 



to form a simple series in powers of the surface excursion to obtain an operator expansion. 

Thus, under these conditions, the operator expansion will converge absolutely. 

The operator expansion may also be obtained by substituting (14) directly into (7). 

Expanding the surface potential X/)(K) in an ordered series in the surface elevation 

#C) = ^I(K) + ^(/C) + 03(«) + --- (15) 

and also inserting it into (7), yields an expression that may be solved successively to de- 

termine the ij)i. In this case, the spatial integrals can be performed to obtain (McDaniel 

1995) 

VI(K) = -2i/$(/c)/fc (16) 

and 

202(«) = v J dK'U^W + ? + </-«)/ dqdq'((q)C(q')F(q, q') (17) 

where 

F(q, q') = U(K' + q + q') + U(K') - V(K' + q) - U(K' + q') 

and £(<?) is the Fourier transform of the surface displacement £(x) 

dx 
C(q) = J 2^C(z)expHgz). 

On comparing (12) and (16), it is evident that the leading terms of the iterative solution 

and the operator expansion are identical. 

Because F(0,q') = F(q,0) = 0 in (17), it may be argued (Voronovich 1985) that V^«) is 

of second and higher order in the surface slope. Thus, following Voronovich (1985, 1996), an 

integration by parts may be performed to extract the contributions of second order in the 

slope from (17) 

2-4>2{K) = ik I dK'^K,')^ - K')[V + i/0 - V(K') - V(K - K')]/U(K'). (18) 

This result will be used in examining the convergence of the operator expansion method. 



The differences between the iterative and operator series are apparent even in very simple 

cases such as scattering from a fiat surface of slope s for which £(x) = sx. The exact solution 

IPE{%) for the surface potential is 

tl>E{x) = -2exp(ikx)(k2 - k2)1/2/k (19) 

where P = k2(l + s2) and k = K0 — Vos- The iterative solution yields 

V>(1)(x) + V>(2)(*) = -2 exp{i~Kx){k2 - k2)1/2{2 - (k2 - k2)1/2/(k2 - k2)1/2]/k. (20) 

Finally, the operator expansion yields 

</>i(x) + if>2{x) = - exp(ikx){k2 - k2fl2[2 + s2k2/(k2 - k2)]/k. (21) 

The surface potential for the iterative solution (20) may be obtained from (19) by writing 

(jfe2 _ £2)i/2 = (p _ £2)i/2 + ft _ ^2)1/2^ _ (p _ «2)1/2/^1 _ Ä2)i/2] and expanding the 

coefficient of the second term on the right hand side of this expression for small 5. Further 

expansion of (20) for small s yields (21). Because the next higher order terms in these 

expansions are of fourth order in the slope, both (20) and (21) are valid to third order in the 

slope. 

The behavior of (20) and (21) as a function of the incident grazing angle 0Q differs 

significantly: (21) is unbounded when 80 or 0f vanishes irrespective of the slope, while (20) 

vanishes at these points. On the other hand, (20) is unbounded for glancing incidence 

on the surface where tan0o = ~s an(i ^E = 0. Because higher order terms in the iterative 

solution contain successively higher order powers of (k2 — K2
)
-1

/
2
, it is clear that the iterative 

solution cannot be truncated at arbitrary order, for this example where the surface excursion 

is unbounded. It is thus anticipated that, not only the slope, but the rough surface excursion 

as well, will play a role in the series convergence. 

3. Numerical solution 

This section addresses the numerical evaluation of the iterative solution and the con- 

ditions for its convergence.   The random-rough surface ((x) is treated as periodic with a 
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fundamental period A so that scatter occurs at grating angles 9n where 

cos 9n = cos 0O + 27rn/(fcA). (22) 

It is convenient also to define nn = kcos6n and vn = v{Kn). 

The integral equation for the surface potential (7) is replaced by the matrix expression 

(Holford 1981) 

MV> = -2$ (23) 

where 

^n = J    -7-pincexp(-iKnx) 

rA dx 

=       —        dx'V(x,x')exp[i(nnx'- Kmx)]. 
Jo      A   J—oo 

Using (8) to define A and B yields 

Amn = k6m_n/um (24) 

B = A - M. (25) 

With (24) and (25), (23) may be rewritten as 

V> - A_1BV> = -2A_1#. (26) 

The exact solution to (26) is 

il>E = -2(1 - C)-^"1^ (27) 

and the iterative solution is 

V> =-2(1 + C + C2 + C3 + • • OA"1^ (28) 

where C = A_1B. 



The conditions under which rpE converges as the dimensions of the matrix C are increased 

have been investigated by Urusovskii (1965) and McDaniel and Krauss (1991). The concern 

here is the condition under which the series 1 + C+C2+C3H converges to (1 — C)_1. The 

requirement for convergence is that the spectral radius of C be less than unity (Varga 1962), 

where the spectral radius p(C) = |Ax| and Xi is the eigenvalue of the n x n complex matrix 

C of greatest absolute value. In this case, the series tpn = J2j iffl converges absolutely. 

Numerical studies are necessary to further pursue conditions for the convergence of the 

iterative and operator series. 

4. A numerical example 

Numerical results are obtained for scattering from a periodic grating described by 

t(T\ _ / ™(1 - 4x/A)/2;      0 < x < A/2    facet 1 
w     \ 7ra(-3 + 4x/A)/2;   A/2 < x < A    facet 2. ^> 

The slope of the grating's facets tane = 2ira/A, and its rms roughness cr = Tra/y/l2. 

First, let us consider the range of the parameters kcr and tane for which the iterative 

solution converges. For this surface, the elements of the matrix M derived in the appendix 

are given by 

M     - M-n l^\ V"      ai/n+j[l ~ (-l)j exp(tyw+J-a7r)] 
Mmn - (2ka   TT  ) 2^ 77} 2   2     m —775     ,      . 

-(ika/w) 2(*»-m + 6n_m+2j)/(j
2 - a2v2

n+j). (30) 
j 

Figure 2 shows values of the two parameters for which p(C) is unity for various angles of 

incidence. For tan e < 1.5, all of the points lie to the right of the line kcr = TT/ tan e suggesting 

that this line is an upper bound on the parameters that will always yield convergent iterative 

solutions for low to moderate surface slopes. 

Figure 3 shows values of the spectral radius computed along the line kcr = ir/ tan e for two 

values of the incident grazing angle 90 = ir/2, 7r/4. Here, again it appears that for surfaces 

of low to moderate slope a sufficient condition for convergence of the iterative solution is 

that fccrtane < w. 



For slopes of less than unity, the operator expansion method will also converge in this re- 

gion by virtue of the arguments presented in sections 2 and 3. This bound may be applicable 

to scattering from other surfaces as well. Kaczkowski (1994) applied the operator expansion 

method to random-rough surfaces characterized by a Gaussian wavenumber spectrum. For 

a surface having an rms slope a' = 0.85, and an incident grazing angle of 60° he found for 

kaa' = 3.56 that the method converged for 40° > 0j > 140° and appeared to diverge for 

other scattering angles. Kaczkowski also reported that for higher values of kaa', the operator 

expansion method failed to converge. 

If the iterative solution or the operator expansion are to be useful in practical applications, 

they must not only converge, but converge rapidly. To examine the convergence of these 

series, an example presented by Voronovich (1996) is considered for which tane = 0.318 and 

0O = 0.609. In this case, kcr has been reduced to 9.4 to insure convergence. The reflection 

coefficients shown in figure 4 obey 

Rn = 2TrS(Kn,K0) = (k/2un)}2ipm       — exp[ix(/em - Kn) - ivn((x)]. (31) 
TO ^0 A 

In figure 4, predictions of the iterative solution are compared to the exact solution - with the 

numbers in parentheses denoting the order in the slope to which the predictions are valid. 

It is evident from this comparison, that terms of 5th order in the slope must be retained to 

obtain good agreement with the exact solution. 

Corresponding results are shown for the operator expansion in figure 5, in which the 

numbers in parentheses again indicate the order in the slope of the predictions. For the 

periodic surface considered here (17) and (18) take the form 

2lp2m = VmJ2 ^Ijlnlm-n-Mm + Vj ~ Vj+n ~ Vm-n) (32) 
j,n 

202m = Mm J2 ^jCm-jiVm + ^0 ~ Vj ~ Vm-j)/Vj (33) 

where 

Cn=       —((x)exp(-2irinx/A) = 2a/(Trn2);    n odd. 



The operator expansion appears to converge more rapidly than the iterative solution near 

the forward scattering peak at n = 0 which corresponds to double scattering, first by facet 

one and thence by facet two. The peak at n = -15 is due to single scatter from facet two. 

Neither series converges rapidly when the scattered field is near grazing where n > 0. 

The predictions of the iterative solution for scattering from a surface on which tan e is 

greater than unity are shown in figure 6. In this example, kcr = 2 and tane = 1.2. The 

magnitude of the reflection coefficient R_i converges rapidly when the incident field is near 

grazing, 90 < 30°, but at higher angles, terms of ninth order in the slope must be retained 

for agreement with the exact solution. For completeness, the corresponding predictions of 

the operator expansion method are shown in figure 7. In this case there is no gaurantee 

that results are convergent, however, retaining terms of second and third order in the slope 

appears to provide better agreement with the exact solution - especially at higher grazing 

angles. 

5. Discussion 

This paper has addressed the two-dimensional problem of scattering from a rough surface 

on which the Dirichlet boundary condition is imposed. The method of successive approxima- 

tions has been applied to an integral equation of the first kind to obtain an iterative solution 

for the surface potential. The conditions under which this iterative solution converges have 

been established, and it has been shown that this regime of convergence is shared also by 

the operator expansion method with the only additional provision being that the slope of 

the rough surface is always less than unity. While the conditions for convergence obtained 

in a numerical example are generous compared to Milder's (1991) Fresnel phase criterion 

ka<j' <C 1, where a' is the rms surface slope, they are still quite restrictive. Milder's criterion 

may, however, play a role in the rate at which operator expansions converge. 

McDaniel (1995) has shown that small-slope expansions may be obtained by expanding 

terms of the type exp{ii/0j[((x) - ((x')]} of the operator expansion's scattering amplitude. 

The arguments of section 2 are not applicable in this case, and further studies are necessary to 
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determine the range of parameters for which this series converges. The last approximation 

that we consider in this hierarchy of solutions is perturbation theory, which results from 

expanding the term exp[i(uf + Vo)({x)] of the scattering amplitude obtained from of the 

small-slope approximation. The arguments of section 2 are again inapplicable, however, it is 

clear in this instance, that the rate of convergence of the solution will be strongly dependent 

on the magnitude of the exponential's argument. 

Currently, the region of convergence of these last two solutions and the rate at which they 

converge can only be determined through numerical studies, which are severely limited by 

the complexity of higher order terms in these approximations. For example, the perturbation 

based small-slope approximation requires the evaluation of 27 terms to obtain a result valid 

to third order in the slope (Thorsos and Broschat 1995) and McDaniel's (1995) extended 

small-slope approximation contains more than 100 terms at this order in the slope. Because 

higher order terms in the iterative solution may be readily generated, numerical studies based 

on this series may provide insight into the convergence rates of the other approximations. 

As an example, the slow convergence in figure 4 for n > 0, may lead to slow convergence of 

the operator and small-slope series when the scattered field is near grazing. 
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Appendix 

The elements of the matrix M are evaluated as in Uretsky's (1965) treatment of scattering 

by a sinusoidal surface. Here, the Hankel function appearing in the matrix will be represented 

by 

Hj>1\kp)= /     —exp[ikt(x-x') + ii,x\((x)-C(x')\] (Al) 

where vx = v{kx). Noting that exp[ivx\((x) - C(x')\] is a periodic function of x' for fixed x 

it may be expressed as 

exp[i^|C(x) - ((x')\) = £ Cj{x, vx) exp(27rr,y/A) (A2) 

11 



where 
rA dx" rA dx 

Cj(x, vx) = jo   —exp[iv*\C{z) ~ <(x")\ - 2irijx"/A}. (A3) 

The matrix elements Mmn then take the form 

M lrlmn 
/"A dx f°° 

= (k/2ir) /    —-exp(—inmx) /     dx' exp(innx') 
Jo     A J-oo 

/oo   (^jk 
—- exp[ikx(x — x')\ ^2 Cj(x, vx) exp(2irijx'/A). (A4) 

-oo    VT 
0 

Performing the integral over x' in this expression yields 

/■A ^-j. 

Mmn = k Y, I   ~r exp[27rzx(n + j- m)/A]Cj(x, vn+j)/vn+j (A5) 
rA dx 

■I 
where the interchange of the summation and integration to obtain (A5) has been justified 

by Uretsky (1965). Using (A3) in (A5), the spatial integrals may readily be performed to 

obtain 

M     = M(1) 4- M(2) lvl
mn  —  lrlnm    i    lr±nm 

where 

M£l = (2W*2) E r -, aUnV[2 'it1* ^r^l   1     ' (A6) 

M£I = -(ikaM £ 8n:;+ür2
m+2j. m 

J2 — all/'* , . n+j 
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Figure 1. Geometry for scattering from a random-rough one-dimensional surface. 
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Figure 2. Values of kcr and tane for which the spectral radius p(C) is unity. 
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tane 

Figure 3. Spectral radius p(C) as a function of tane for ka = 7r/tane. 
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Figure 4. Magnitude of the reflection coefficient as a function of reflected 
order predicted by the iterative solution for ka = 9.4, tane = .318, and an 
incident grazing angle 0O = .609. The numbers in parentheses indicate the 
order of the slope to which the predictions are valid. 
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Figure 5. Magnitude of the reflection coefficient as a function of reflected 
order predicted by the operator expansion for the case of figure 4. 
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Figure 6. Magnitude of the reflection coefficient i?_x as a function of in- 
cident grazing angle predicted by the iterative solution for ka = 2 and 
tane = 1.2. Again, the numbers in parentheses indicate the order of the 
slope. 
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Figure 7. Magnitude of the reflection coefficient i?_i as a function of inci- 
dent grazing angle predicted by the operator expansion for the case of figure 6. 
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